
Ln A RAND NOTE

An Intelligent Information Dictionary for
N Semantic- Manipulation of Relational Databases

Stephanie J. Cammarata

March 1988

OPTIC
IELECTIE
JAN2 4 1 DII

RAD90 01 23 215

The research described in this report was sponsored by the
Defense Advanced Research Projects Agency under RAND's

National Defense Research rnstitute, a Federally Funded

Research and Development Center supported by the Office

of the Secretary of Defense, Contract No. MDA903-85-C-0030.

This Note contains an offprint of RAND research originally published in a journal
or book. The text is reproduced here, with permission of the original publisher.

The RAND Publication Series: The Report is the principal publication documen-
ting and transmitting RAND's major research findings and final research results.
The RAND Note reports otheroutputs of sponsored research for general distri-
bution. Publications of The RAND Corporation do not necessarily reflect the
opinions or policies of the sponsors of RAND research.

Published by The RAND Corporation
1700 Main Street, P.O. BMx 2138, Santa Monica, CA 90406-2138

A RAND NOTE N-2860-DARPA

An Intelligent Information Dictionary for
Semantic Manipulation of Relational Databases

Stephanie J. Cammarata

March 1988

Prepared for
The Defense Advanced Research Projects Agency

A66e910 iFor

DfI'C TAD Y
Unannounced 0
Juast lf oatlte------

WeMtrilbution/Q tliabIlIty Co4e
AVOI and/or

DIG% Special

RAND
APPROVED FOR PIJSLIC RELEASE DISTRIBUTION UNLIMITED

An Intelligent Information Dictionary
for Semantic Manipulation of Relational Databases'

Stephanie J. Cammarata
The RAND Corporation

1700 Main Street
Santa Monica, CA

90406-2138

ABSTRACT

,This paper describes an intelligent information dictionary (IID) which serves as a knowledge-based in-
terface between a database user and the query language of a relational database management system. I1)
extends the traditional roles of a data dictionary by enabling a user to view, manipulate, and verify se-
mantic aspects of relational data. Our use of IID focuses on the interactive creation of simulation-
specific databases from large,'publi "databases in the domain of military simulation and modeling. We
-vE, identified classes of database-related activities performed by a simulation developer when prepar-
ing databases as input to simulation models. Three categories of III) capabilities supporting these activi-
ties are:explanation and browsing, customized data manipulation, and interactive con, istency checking.

4 "4his paper *vdetaikpecific features of these categories and present examples of their use.

1. Introduction

An intelligent information dictionary extends the traditional roles of a data dictionary by enabling
the user to view, manipulate, and verify semantic aspects of data not expressed in a relational database.
In the past, data dictionary systems have served as an interface between the database management sys-
tem (DBMS) and the application programs that access the data. This close coupling of data dictionary,
DBMS, and application programs excludes facilities for interactive access by a casual user. With the ad-
vent of workstation environments, interactive software, and public domain databases, the use of DBMS
is no longer limited to database administrators (DBAs), operations managers, and application programs.
Researchers and practitioners in many disciplines are experimenting with DBMS for organizing, main-
taining, and sharing databases [McCa82]. Unfortunately, .e £MS tools and languages currently in

1 This research was sponsored by the Defense Advanced Research Projects Agency under the auspices of
RAND's National Defense Research Institute, a Federally Funded Research and Development Center sponsored
by the Office of the Secretary of Defense.

Reprinted from Advances in Database Technology-EDBT '88 International Conference on Extending Database
Technology, Venice, Italy, March 1988, pp. 214-230,) Springer-Verlag. Reprinted by permission.

2

existence do not have facilities to aid these users in understanding and accessing the information they

need [Curt8 I].

In this paper we discuss an intelligent information dictionary (1ID) system which we developed

as a knowledge-based interface between an interactive user and the query language (QL) of a relational

DBMS. III) aids a user in understanding the organization of a relational database by providing

application-specific explanations of relations, domains, attributes, and constraints. This facility combines

knowledge of the domain with knowledge of relational database concepts to produce interactive tools for

browsing, customized data manipulation, and interactive consistency checking. LII) encourages users to

interact with a relational database by manipulating semantic entities and relationships which are implicit

in the relational representation.

In the next section we present a scenario that motivates this research within the domain of mili-

tary simulation and modeling. We describe three categories of database related activities pcffrmed by a

simulation developer when preparing databases as input to simulation models. Section 3 discusses ID

capabilities supporting these interactive database "preparation" activities and presents examples of their

use. The architecture of IID is outlined in Section 4, and Section 5 discusses related research. In Section
6 we conclude with some directions for future work.

2. Motivation and rationale

National security policy research and analysis depends on the heavy use of military modeling and

simulation, such as battle management, and command and control studies. It is imperative that these

models use large quantities of real-world data which is valid and consistent. Therefore, many classified

and unclassified databases are maintained at RAND as input to simulation models. As part of our

research, we observed and analyzed the use of these "public" databases as input to specific simulation

models.

When simulation developers attempt to use these databases, they face some major obstacles.
Most of the public databases are acquired from federal agencies which distribute data to a wide variety

of clients and customers. When the databases arrive at a client's site, they are generally organized as
record-oriented flat files that are subsequently "relationized" and loaded into a DBMS. However, the

resulting relational schema is not designed using established database design or modeling principles and
is not developed with the assistance of any domain experts. Consequently, semantic integrity constraints
that should apply to the public databases are rarely expressed in the relational schema organization or

reflected in the data instances. In addition, little documentation is provided with the public databases,

and many data values are missing, inconsistent, and erroneous.

3

At RAND, these public databases are maintained in Ingres. Upon closer examination of database

usage, we discovered that the relationship between the Ingres databases and their simulation-specific

counterparts is not at all isomorphic. Most of the public databases contain more data than is necessary

for a particular study; therefore, it is common for a simulation builder to extract a subset of the Ingres

databases for use as input to a specific simulation model. Furthermore, modelers and analysts require

data which is tailored to their own specific simulation needs. Their requirements usually entail a combi-
nation of transformations to the Ingres databases to derive a database with the desired profile.

During this derivation process, the semantics of the data play a major role in the integration and

abstraction operations performed by the simulation builder. Unfortunately, DBMS query languages can-

not easily or directly express these transformations. The database manipulations are usually performed

through the joint efforts of an application expert and a database specialist. The application expert uses

his or her domain expertise to decide how data records should be integrated and abstracted; the database

specialist contributes by providing knowledge about database operations to achieve the desired view.

Furthermore, many of the required operations cannot be performed within the DBMS query language

and also require the services of an applications programmer.

2.1. Database preparation activities

By observing modelers interacting with relational databases, we have identified three distinct

cognitive phases that are critical in composing simulation databases: mentil modeling and synthesis,

conceptual retrieval, and semantic validation. In the following subsections, we discuss the limitations of
interactive DBMS facilities and how they hamper each phase of database interaction. Our objective was

to remedy these deficiencies by providing an interactive environment supporting database preparation

processes.

2.1.1. Mental modeling and synthesis

When users are presented with the task of browsing through a database, they tend to preview the

data in a fashion which helps them mentally abstract major concepts and relationships. The first phase of

this process is usually scanning the relational tables and attribute names to arrive at a central organizing

theme. For someone unfamiliar with the specific relational database, this activity is difficult because at-

tribute names are non-intuitive acronyms listed in a data dictionary with no description of meaning or

usage. After a user tries to glean an overall organization of the relational structure, he or she begins look-

ing at rows of values in the relational tables. The relational model does not naturally represent hierarchi-

cal concepts; therefore, users frequently search through data and schema hoping to find some hierarchi-

cal organization as a basis for abstracting the flat relational tables. Furthermore, most data is encoded

and unformatted, providing little evidence that their mental model of the structural organization is valid

and consistent. By iteratively looking at the relational structure and selected data values, a user begins to

synthesize a conceptual image of the entities and relationships represented in the database and how they

4

map to the necessary simulation concepts.

Although query languages allow flexibility in searching and selecting records based on syntactic

pattern matching and efficient indexing techniques, they do not provide an overview or general presenta-

tion of the data. If a potential user is familiar with a database and is an experienced DBMS user, then it

is much easier to browse through a database in search of specific concepts and entities. However, for the

casual user there are few tools or friendly environments to support this modeling and synthesis process.

For example, if a simulation builder needs information about the 67th Armor Division, he or she may ap-

proach this query by searching all tables for the string "67th Armor Division". It is unlikely that this

query will retrieve any useful information. First, "67th Armor Division" is probably abbreviated or en-

coded so a syntactic search may not produce any matches. Second, there are many different kinds of in-

formation that a user may desire about an armor division, such as the general characteristics of the 67th

Division, or the subordinate units which are commanded by the 67th Division. A simple text search,

however, would not provide any explanation of what is retrieved, only specific data values.

2.1.2. Conceptual retrieval

After a user has gained some familiarity with the organization, structure, and content of a partic-

ular database, he or she must determine what data to retrieve for deriving a specific simulation database.

The user compares his or her mental model of what is in the database with a conceptual profile of the

desired data. Based on this comparison, the user must retrieve those relational entities which map onto

the desired conceptual profile. A significant factor which simulation builders consider is the granularity

or resolution of the information. Most often, the public databases represent a finer resolution than is

needed for the resulting database. Integrating and aggregating data elements play a major role in com-

posing a simulation database.

Users would like to access and retrieve data from public databases whose values collectively

represent conceptual entities or relationships. However, query languages provide only a microscopic

view of data entities and elements. To derive an entity with the desired profile, a user must translate the

profile into standard DBMS selection, projection and join operations. For example, if a user wants to re-

trieve all "reconnaissance" aircraft, he or she must mentally compose a semantic description for the con-

cept of reconnaissance. Next, the user must map the semantic description onto the attributes and data

available in the public databases. Finally, a DBMS query is constructed which integrates data from vari-

ous sources, retrieving those items which currcspond to the concept of reconnaissance. Similarly, to

derive a value for "firepower" associated with an airbase, it is necessary to access and aggregate a

number of variables upon which firepower is dependent.

5

Although many of these capabilities can be performed by programs using an embedded data
manipulation language, we should not expect casual DBMS users to become DBMS experts simply to

browse through the data and retrieve relevant conceptual entities. View mechanisms and embedded data
manipulation languages are similarly geared toward interfacing application programs with the database
and ignore the needs of interactive users.

2.1.3. Semantic validation

The final activity performed when constructing a simulation database is to validate the correct-

ness of the structure and content of the derived database. In many cases, the data which has been select-
ed may not be consistent or correct. Numeric cross tabulations may be incorrect if only a subset of the
database is retrieved. Existence dependencies between entities may also need to be verified. For in-
stance, a user may want to enforce a constraint stating that if long range bombers are located at an

airfield, then the airfield must have at least one concrete runway. In addition, the simulation developer
may want to add additional constraints on the derived database which did not hold for the public data-

bases.

We have observed this validation process being carried out jointly by a database and domain ex-
pert. This task is usually performed by manually searching through data records, looking for suspect or
errorful values. Often, simply the presence of a data record will trigger, in the mind of the domain spe-
cialist, a condition or constraint which should be considered in the simulation database. Augmenting the
resulting database is also common when necessary data is not available from the public databases.

3. lID capabilities

Traditional data dictionaries are used for defining DBMS entities, generating reports, and ex-
pressing transactions, but are not suitable as an interface between an interactive user and a DBMS
[Alle821. Our intdligent information dictionary fills this need by addressing the three phases of database
preparation discussed above. lid supports explanation and browsing, customized data manipulation, and

interactive consistency checking by combining domain knowledge with relational DBMS knowledge.
Object-oriented knowledge bases in IID represent both the constructs of a relational database and

domain specific knowledge acquired from an application specialist 11D is implemented in Franzlisp Fla-
vors running on a Sun Microsystems workstation. The dictionary communicates with the Ingres rela-
tional DBMS, also resident on a Sun machine. The application database we are utilizing to test lID is an
air order of battle (AOB) database representing air resources such as airbases, runways, and aircraft. The
examples shown in the following sections are derived fron this database and other similar military data-

6

bases. Details of the ID architecture are presented in Section 4.

3.1. Explanation and browsing

Explanation and browsing is enabled in IID by presenting an extensive collection of metadata to
users to guide them through the maze of relations and attributes. Metadata in our information dictionary
does not refer strictly to information needed by the DBMS, such as data type and field length. Rather, it
refers to semantic information about the data which users rely on when making decisions about how en-
tities relate to each other, and whether the data is relevant to their application. Figure 1 shows the user
interface for browsing through relations and columns. Much of the information show in Figure 1 is
maintained strictly within the information dictionary without accessing the relational databases. In this
example the user is viewing the column names for the "aircraft" relation, and the column "btype" is
further described. The allowable values for btype are expressed as "Value constraints". The items in this
enumerated list are mouse sensitive and can be further described as we have shown for the value "BC'.

DATAiA3: sob RELATIWI4t COLUMNS:

Co lew: btvpa
irmenm Lons na: Basic aircraft type

1o nu. Relation: aircraft

runway Group : none
Units: 1/8

depot tc Dats acquir d: 17/6/9U

swel d Usiac aqency: Air Reouc Infor..ti.n Agency

-n. Dwind from: n/a
eOdt Inent O0iiptary: ia.

*.,i.. Defalit vale: n/s

_ .. I Valu. conftraints: ("S At AC AD JA SUE DC

ows Dacr iption: rho first chwtw Itrndical A long range bomer demsign"d for an

O'llwamt belongs. For A1, Codes at & I uni*ued operatlng radiu nar doe tnaircraft. Tea second crl.ratr contalns MIS At ae.,i1 gss Andt ba Oolea.
po ig ata In the BI-s -I.PWent 121 loa.d

.
*ifirf a tme u ,war's intent for utl 11

capalbillty. or modiflcation.

ImaI-t'o. Uln..... blbar1 rlelail,. oVi rllltlaoana qsui~ ui~tt

Sllgct a., artl 10ia. i 1[U, .,. .U s1p €1ciag any a.. mt.,l ai. tho. a.iraI it.

Figure 1: lID explanation and browsingiu I !

7

Values for column descriptors such as "Date acquired", "Source agency", and "Derived from",

are represented and maintained in the information dictionary. Therefore, when a new version of the
AOB database is loaded, the "Date acquired" field reflects this new information. The descriptors "Obli-
gatory", "Default value", and "Value constraints" not only provide explanatory information but also have
associated procedures which interactively validate data instances. These capabilities are further dis-
cussed in the section describing consistency checking.

Another feature useful for browsing through an unfamiliar database is liD's verbose mode.
When verbose mode is enabled, encoded DBMS output is expanded into its full textual name or
identifier. Similarly, input to the DBMS through lID can contain fully expanded abbreviations. For ex-
ample, in a traditional query language, a user must know the country code for France in order to retrieve
all aircraft located in France. With liD's verbose mode, a user can submit the query:

retrieve (aircraft.idnum) where country = 'france"

Although "country" is not a valid column name and "France" is not an allowable value for the column
name "ctycd", ID preprocesses the input and submits to Ingres the query:

retrieve (aircraft.idnam) where aircraft.ctycd = "fr"

Similarly during output, any country codes will be expanded to their full country name.

These browsing capabilities help a user interact with a DBMS in a more natural fashion and dis-
tance the user from the unintelligible codified aspect of databases maintained by a DBMS. Other
research efforts are also addressing the issue that DBMS interfaces are unsuitable for casual users. The
Rabbit system [Tou82] aids user interaction through an iterative process of query reformulation. Both
lJD's browsing capabilities and Rabbit's retrieval by reformulation attempt to facilitate the user's under-

standing of instance data.

3.2. Customized data manipulation

One major obstacle facing interactive users is the lack of encapsulation facilities for grouping in-
dividual data values and referencing them as a single semantic concept. Users emulate conceptual re-
trieval by repeatedly navigating through relations to retrieve the desired data. Instead, they would like to
express a combination of attributes and values as a customized conceptual package and subsequently
refer to that concept as a single entity. Three 1ll1 features encourage customized data manipulation: view
templates, smart joins, and aggregation functions.

8

3.2.1. View templates

View templates allow a DBMS user to build a template or profile for a particular concept, and

refer to that template for data access. lID translates a view template into an acceptable query and submits

it to the DBMS. In Figure 2, we show the template describing a reconnaissance aircraft. Although the

concept of mission is not explicitly represented in this database, the user's notion of a reconnaissance

mission translates into characteristics represented in the database such as aircraft capabilities and radar

equipment. In this example, "mission" can be regarded as a virtual column for aircraft and "reconnais-

sance" can be viewed as a virtual value for the column.

The retrieve command shown in the "Query:" window of Figure 2 indicates how the user would

express a templated query. With this capability, domain specialists can refer to database entities in their

own terminology and can customize the meaning of application-specific concepts and relationships. The

window interface also allows a user to view the template description as we have shown in the "TEM-

PLATE:" window of Figure 2.

DATABASE. sob RELATIONS: COLL14NS
Calu. hl: otnpe

frLa ft: 8asic Aircraft type
* O'rb s Rel to arr' t
oriqtt iGroup : non.

rn y,C Du s: nla

depotDate aquree: 17//5

* Suroe |gency: air Pesource !nfar.atiOn Agency
D erisno 'rt.: n/I

fOOaligaturV: no

S' I eonrsntraints: (AA AS SC 40 SB h B BC 90 CA C1

O-pg Dta t'lpe: C

Lengn;:

Dscrtpt tn: the first characetr -tnsc t s the ajor fa ety to .ncn the to. .1

d Ipment belongs. For ASO, opeos we A for rOtary-Ing aircraft or 6 for ffuo-vi

rt. The secona cnaracter contains a coe entry aescriOing a f-,rtnar suotbet

TEMPLATE: Ig.thln -,he .$)or nouio, ent fwetly. Fur An., this Code Inoicte i the

a wanufacurer's intent for tni ztcn 0egar'ess of present primary rot.

.smi lonO i meco -- i7 or eadification.

aircraft.capab =- surv and

aircraft.radar = low-angli,

Query: retrievem (aircreft.idnl) %shore emsasaione = rlciri.

Figure 2 A view template for reconnaissance

9

3.2.2. Smart join operator

Expressing a join in a relational query language requires a user to navigate through foreign key

attributes. In [ID, a smart join operator uses the information stored in the dictionary to recognize implicit

links between relations. For instance, in Figure 3 a user wishes to retrieve all aircraft of a certain type

that are located in Europe. However, aircraft are not recorded by continent; rather, they are organized

by country. In Quel, this query would be expressed as:

retrieve (aircraft.idnwn) where aircrafr.btype = "AC" and

aircraft.baseid = airbase.baseid and

airbase.crycd = continent.ctycd and

continent.name = "europe"

Using liD's join feature, the user need only submit the retrieve command shown in the "Query:" window

of Figure 3. During [ID query preprocessing, the dictionary refers to its domain specific knowledge

about aircraft and airbases, and to its knowledge of relational joins. Join fields may be specified with the

database dictionary information or may be expressed interactively by a user. Dl translates the user's
query into the equivalent Quel command and submits it to Ingres. The window interface also depicts the

relationship between "aircraft", "airbase", and "continent", providing a map of the correspondence

between relations. This display feature is also convenient for browsing through the network of relations.

DATABASE: sob RELATIOINS: COLUMNS
Calutn name: Oride

Ld, fate: Sastc atrcr~tt type

R. a..on aircraf
runay Grcup: none

depotm O atacquired: 17/0,85

2.a Zaurce agancy: Ai RI33r - Infor.aton Agenct
marn Orlvnd'r etm: nfl

cO t'l nt COiiq atory: no

.n.i value constraints: (AtA A &C AD 5A go BC RD CA :2:
Data type: C

equip tergll:
DeSCripFIn: The first naac r -u' ,i r rre 1 - t*ly t an? n *t, -1 " . .
. utplent elo gs. For A0S. codas are A for rotar-tnq aciCrA' cr 3 tO' +'.90-.'n
alrcrl. The scono cnaraci-r contains a -ega cnt- aencri',b q a 'artner nUDtas,

JrfN FnELDS: miflt te :, , cr *,u,.ent t., f,'y. For AOt, 'h' code ,,0t It .Th*

Il T~raift airfraef manufacturer's intent for ut i.aticn -ega-c'Sis of Frosent preary role.

asid capabii or DOi aion.

ctytd --

Query: retrieve (aircraft.tdmnm) w he co1nettnsnt.n = Europ. and a*itrft.btype a &C.

Reapone: 43-766 13-392 63-810 82-343 13-388 13-782

Figure 3 A smart join operation

10

3.2.3. Aggregation functions

Aggregation functions are useful for abstracting a detailed database and retrieving data at the

desired level of granularity. Built-in DBMS aggregate functions are limited to operations such as count,
sum, and average. IID's a:gregation functions allow a user to express a domain-specific aggregation and
use that specification for interactive queries. Consider the query shown in Figure 4. In this example, the
user is interested in computing the firepower associated with airbases. In the AOB database; however,
firepower is not recorded for airbases but rather it is stored with missile depots. An IiD aggregation

function allows a user to specify how firepower should be computed, and to subsequently invoke the
pre-specified declaration. In this way, the user has the flexibility to interactively derive appropriate data.
Aggregation functions, like view templates, enable users to construct virtual columns which are automa-

tically expanded by lID. The interactive query in Figure 4 is translated into a Quel query of the form:

retrieve (airbase.baseidfirepower=avg (depot.firepower

by depot.baseid))

where airbase~baseid = depot.baseid

OATABASE: aeb RELATIONS: COLU IIS:
Colun nom: rtjpe
Long ha.: basic aircraft type

atrbass Idnu Rt atlo,: arraft

runway org. roup : ere
16.it Units: n/a

depOt w O Date acquireod: 17/6AS
h-d Source agency: Air Aesourte Iof~ntatu: Alency

b1rned frow: ndd

contfl nnt botgatory: noosn efault C1 f~l/h

:111 .alue :COntraints: (AA A AC AD &A A1 SC 9D CA -2)
Date tpe: C

. , Length; 2

C scriptlon: rho first charoctsr ndicates th. major fa.l I to which the it.. of
tquIpWet belongs. For A4, cooes a for rotary-ving aircraft or S for flxt d-wln

1. "" --scon carecter contains a cooed entr" describing a further S.0t4i

A GREGATIO N FUNCTION : g thln he e o w e uip mnt fr i ly. For U 0. this code indicates tho

C wufac,ter'$ intent for uti lizaton regardless of present prlary role.

.floreposro -- > ily, or *odilcation.

(awg de pot, ftepoer

by Iepot, basid)

4wheire sirbase.bolfd

depot, bestd

Query: retrisro (erbsem.basid, *fireposwen).

describe DTaboso describe rlaiiton sio relation Coluens describe colun - it

select n Action to the aoe nOte by clicaing ey aws .ilo on the T A.r lite..

Figure 4 An aggregation function for firepower

Aggregation functions, view templates, and a smart join operator supply the user with a more
comprehensible view of the database without forcing the user to review the details of each record. We
envision users constructing libraries of view templates and aggregation functions. These stored declara-

tions can be accessed and viewed by other users thereby creating multiple perspectives. Soft selection
criteria [Mart86] is another area which relaxes the rigidity of DBMS query languages by allowing sub-

jective or varying selection qualifications. Similar research has been conducted for statistical databases

where aggregation is a predominate function in database queries [Chan8 I].

3.3. Interactive consistency checking

Many knowledge base management systems and intelligent database systems are providing facil-

ities to automatically verify semantic constraints through the use of triggers and allerters [Ston851. For

interactive database users who are deriving personal databases from large public databases, conventional

methodologies for constraint specification and enforcement do not apply. Conventional constraints must

be built into the data dictionary by a database administrator and data modeler. Instead, users would like

to express new value and structural constraints, and modify those declared for the public databases. The

semantic validation capabilities available in IIl) allow interactive "scrubbing" of data values in the pub-

lic databases which may be incorrect or inconsistent with the resulting derived database. The informa-

tion dictionary maintains knowledge about obligatory fields, default values, and value and structural con-

straints. For instance, if the number of aircraft owned by a squadron is set to "20", the user would be

notified that "20" is an incorrect value because of a domain rule stating that the number of aircraft owned

by squadron must be a multiple of 6. A user may also want to express an existence constraint of the

form:

If there is a nuclear launching site on an airbase,

then there must be at least one nuclear weapons depot on that airbase.

Validation mode in ED supports both value constraints and functional dependencies. If the above

rule has been entered and validation mode is enabled, then a validation procedure is invoked whenever

the user retrieves a nuclear launching site. If a nuclear weapons depot does not exist in the derived data-

base, the user would be notified that a constraint rule has been violated.

Constraint management is receiving much attention in the context of expert database systems and

knowledge base management systems. In many cases, researchers are advocating constraint

specification, propagation, and satisfaction as an underlying formalism driving the entire processing of

the system [Shep86]. In lID, however, consistency checking is approached from a very localized per-

spective, that is, a user's derivation of application specific databases. liD's validation procedures report

invalid data but currently make no attempt to correct inconsistencies.

12

4. lID architecture

The liD software system is comprised of three major processing components: the Lingres inter-
face, ID object-oriented dictionary framework, and user interface. These components are shown as
shaded modules in Figure 5. Domain dependent information reside in at least three data and knowledge
bases: the relational database maintained in Ingres, the "public" knowledge base, and one or more
"private" knowledge bases. Figure 5 depicts these "domain specific" entities as dotted modules. Expla-
nation and browsing, verbose mode, and validation mode are currently operational in I[D. Limited func-
tionality for aggregation functions, smart joins, and user templates has been tested and general versions
are currently under development. Design and implementation of an extended user interface is also un-
derway.

Ingres

"Public "
knowledge

I knowledge
@ data

usercontrol w

Figure 5 ID system architecture

We implemented liD's user interface on top of a Sun View windows package in Franzlisp. Our
initial versicr. of the user interface was designed to give the user the full range of functionality provided

by 1ID at the expense of overloading the user with too many options. We are experimenting with various
designs and organization of windows, menus, and input procedures to maximize the capabilities of [ID
while minimizing the cognitive overhead incurred by hierarchies of menus and windows.

13

Commands issued to 1ID through the user interface are passed on to IID's object-oriented dic-
tionary framework. We implemented this module as a domain-independent and DBMS-independent en-
vironment for reasoning about relational database entities. The dictionary framework incorporates gen-
eral knowledge about DBMS concepts such as relations, attributes, and joins. In addition, the frame-
work accesses domain-specific information necessary for liD processing. During IID user interaction,
the dictionary framework combined with domain information, such as AOB data and knowledge bases,
enables facilities like verbose mode, consistency checking, and automatic join operations by reasoning
about database structures and domain entities.

Much of lID's processing translates a user's query into a syntactically and semantically valid
Quel query. This translation is similar to the programming language concept of macro expansion where
a succinct declarative expression is replaced by a detailed procedural expression. ID constructs a Quel
command (semantically equivalent to the user's input query) and submits it to Ingres through the Lingres
interface. Data instances are returned to the user following 1l1D query postprocessing.

Three separate sources of information comprise the domain dependent components of l1D. One
data repository is the public relational database maintained in Ingres. The AOB database we are utiliz-
ing to develop and test lID contains three main relations of approximately 2000, 7700, and 11000 tuples,
and the number of fields per relation ranges from 25 to 36. This database is the source of value data re-
trieved in response to lD queries.

A "public" knowledge base corresponding to a domain database is one of two knowledge sources
representing the semantics of the relational database. The information retained in this knowledge base
can be regarded as the default semantics applicable to the domain database. Development of this com-
ponent for the AOB database resulted from a data modeling effort which proceeded in parallel with the

design and implementation of ID's processing components. The knowledge base is organized as objects
relevant to AOB entities such as aircraft and airbases. Extensive descriptional information to support

liD's explanation facilities was acquired from AOB domain specialists and extracted from various
sources of documentation. The second knowledge source, a private knowledge base, represents seman-
tic information derived by a user. This knowledge base augments the public knowledge base and stores
aggregation functions and view templates for a particular simulation model or user. We envision many
private knowledge bases representing different views of the domain database. During our initial

developement effort, however, we have been experimenting with a single private knowledge base.

The Lingres facility we developed allows access to an Ingres database from Flavors and Lisp,
and offers the full functionality of Quel's retrieve, create, delete, destroy, and append commands.
Lingres maintains only the schema and dictionary data that Ingres itself supports. These capabilities are

similar in functionality to those offered by Kee Connection, an expert system tool interface [lnte87]. For
the purposes of modularity and future development, our goal for Lingres was merely to mimic the func-
tionality of Ingres, i.e.,"Ingres in Lisp". In the future, changing to Common Lisp (or another Lisp) will
affect only the "Lisp to C" connection; supporting SQL will only require new parsing routines in

14

Lingres; and changing to another relational DBMS, e.g., Oracle, would simply mean replacing Ingres
system calls with calls to Oracle system routines. One of the most time consuming operations of IId is
communicating with Ingres; therefore, Lingres also improves ED efficiency by duplicating Ingres meta-
data, thereby reducing communications with Ingres.

5. Related research efforts

Similar work addressing browsing and explanation is often refered to as metadata management.
Mark and Roussopoulos [Mark86, Mark87] approach metadata management through self-describing
data models. They are developing capabilities, similar to 1ID, to initially browse through the schema to
learn about the database and then proceed to access the data. They are applying their model to facilitate
standardized information interchange. In this application, however, they are not dealing with semantic
aspects of the data, and therefore have not incorporated domain specific knowledge for explanation and
validation.

Information Resource Dictionary Systems (IRDS) have also been the subject of a considerable
amount research [Dolk87, Kers83, Nava86]. In the past, IRDS were considered primarily as a design
tool for information modeling and database design. Only active data dictionaries were utilized during
batch DBMS operation or real-time transaction processing. In [Gold85] Goldfine describes the National
Bureau of Standards specifications of an IRDS system. This standard specifies a kernel set of basic data
dictionary capabilities plus a collection of independent optional modules. So far, three additional
modules have been specified dealing with security, application program interface, and documentation.
The emphasis on program interfaces, and neglect of interactive tools is evident in the specification.
However, we are seeing efforts extending the kernel IRDS specification to support interactive environ-
ments [Koss87].

The scope of an IRDS system embodies the major activities, processes, information flows, orga-
nizational constraints, and concepts of an "Enterprise Model". Because interactive use of a DBMS and
data dictionary have not been feasible until recently, traditional information management processes do
not include casual users exploring a database, deriving new databases, or sharing personal databases.
We expect that the functionality offered by IID will become necessary as the use of interactive informa-
tion systems proliferates.

15

6. Condusions and future work

In this paper we have discussed a development effort and resulting software for improved in-

teractions between a database user and a relational DBMS. IID is targeted to aid a casual database user
who is familiar with the database domain but is not an experienced DBMS user. One of our research

goals was to extract domain-specific information from a simulation expert and incorporate it as

knowledge in the information dictionary. Another goal was to represent knowledge about relational data-

base operations, such as join operations, to support query construction. Explanation and browsing, cus-

tomized data manipulation, and consistency checking are the main processes supported by the 1ID in-

teractive environment. Our initial studies indicate that IID facilities augmented with domain and data-

base knowledge will significantly streamline the interactive preparation of simulation databases.

Development of IID grew out of a larger project which is addressing the use of large heterogene-

ous databases in object-oriented simulation systems. We have recognized that the preparation phases of

mental modeling and conceptual data manipulation stem from attempts to view a flat relational database

as an object-oriented hierarchy of simulation entities. IID strives to present the mapping between rela-
tions and domain entities more explicitly.

In the short term, we will be expanding [ID's facilities to include spatial presentation and aggre-

gation. In many public databases, location of entities is a major determinate in whether or not the entity
is included in a simulation database. We plan to extend the explanation facilities so that spatial data can

be quickly plotted on a geographical map, and data points on the map can be easily accessed and aggre-

gated.

Configuration management of both public and simulation databases is another desirable feature.
Users would like to be notified if any of their simulation data has been invalidated by a new version of

the public databases. Furthermore, they hope to be able to pose queries about the changes that were en-

forced by a new version, such as: What is the difference between the old and new versions of the F- 14

aircraft data? To support this feature, it is necessary to track and log the derivation of any simulation da-

tabase and reason about operations which produced the resulting data.

In parallel with 1ID development, we will be augmenting our simulation knowledge base with

metadata and constraint information related not only to the relational aspects of the data, but also to the

object-oriented schema of the data. Our long term objective is the use of IID as an active information

dictionary within an object-oriented simulation language. In this role it will provide a dynamic commun-

ication channel between a object-oriented semantic schema and the corresponding relational instances of

many diverse public databases.

16

References

[Alle82] Allen, F. W., Loomis, M. E., and Manning, M. V., "The integrated dictionary/directory sys-
tem," ACM Computing Surveys 14(2), pp.24 5-2 86 (June 1982).

[ChanS 1] Chan, P. and Shoshani, A., "Subject: A directory driven system for organizing and access-
ing large statistical databases," pp. 553-563 in Proceedings of the seventh international
conference on very large Data Bases, Cannes, France (1981).

[Curt8 1] Curtice, R.M., "Data dictionaries: An assessment of current practice and problems," pp.
564-570 in Proceedings of 7th conference on very large data bases, Cannes, France (Sep-
tember 1981).

[Dolk87] Dolk, D. and II, R. Kirsch, "A relational information resource dictionary system," Com-
munications of the ACM 30(1), pp.4 8-6 1 (January 1987).

[Gold85] Goldfine, A., "The information resource dictionary system," pp. 114-122 in Proceedings of
the fourth international conference Entity-Relationship approach, Chicago, IL (October
1985).

[Inte87] Intellinews 3(2), Intellicorp (January 1987).

[Kers83] Kerschberg, L., Marchand, D., and Sen, A., "Information system integration: A metadata
management approach," pp. 223-239 in Proceedings of the fourth international conference
on Information Systems, Houston, TX (1983).

[Koss87J Kossman, R., "An active information resource dictionary," in Proceedings of Ingres user
association meetings, San Francisco, CA (April 1987).

[Mark86] Mark, L. and Roussopoulos, N., "Metadata management," Computer 19(12), pp.26-35
(December 1986).

[Mark87] Mark, L. and Roussopoulos, N., "Information interchange between self-describing data-
bases," Data Engineering 10(3), pp.46-52 (September 1987).

[Mart86] Martin, D., Advanced database techniques, The MIT Press, Cambridge, MA (1986).

[McCa82] McCarthy, J.L., "Metadata management for large statistical databases," in Proceedings of
8th conference on very large databases (September 1982).

[Nava861 Navathe, S. and Kerschberg, L., "Role of dictionaries in information resource manage-
ment," Information and Management 10(1), pp.21-46 (January 1986).

IShep861 Shephard, A. and Kerschberg, L., "Constraint management in expert database systems,"
pp. 309-331 in Expert database systems, ed. L. Kerschberg, Benjamin/Cummings Publish-
ing Company, Inc., Menlo Park, CA (1986).

17

[Ston85] Stonebraker, M. and Rowe, L.A., "The design of POSTGRES," Memorandum No.
UCB/ERL 85/95, University of California, Berkeley, Berkeley, CA (November 15, 1985).

[Tou82I Tou, F. N., Williams, M. D., Fikes, R., Henderson, A., and Malone, T., "Rabbit: An intelli-
gent database assistant," pp. 314-318 in Proceedings of the third annual national confer-
ence on artificial intelligence, Pittsburg (1982).

